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1. LNTRODUCTION

Ln pr.vious paper s (tglehart and Shadier (l978a), (1978b), (1979)

and Shedler (1979)), . provided methods for ob taining fro. a single

simulation run point estimates and confidence inte rvals for general

characteristics of “passage t imes ’ in certain closed networks of queues .

Informal ly , a passage time is the time for * job to traverse a portion of

the network. Such quantities are important in computer and co unication

system models, and in this context , quantities other than mean values are

of interest. The basis for  these estimation methods is he regenerative

method for  simulatio~
’ analysis (Crane and tglehart ( 1 9 7 5 ) ) .  For art

introduction to and a detailed review of the regenerative method , see

Crane and Lemoine (l9~~) and Igiehare ~l9 5a).

We consider here th. calculation of theoretical values for varian ce

constants entering into the central limi t theorems used to obtain

confidence intervals f r om passage time simulations . ~sing resu lts of

Hordijk, Eglehart , and Schaseberger ~l.9~6) fo r  the . alculation of moments

in discrete time and continuous t ime Starkov chains , ~. calculate variance

constants pertinent to mean passa ge tim•s. ~e .~o this first for the

broadly applicable marked job method” for passage time simu ation which

is based on the tracking of a distinguished job, and then ~~ the

decomposition method” in which observed passa ge times for  al l. of this ~obs

enter into the construction of point and intarva . estimates. he

decomposition method provtdes point and iaterva .. estimates ‘or a r est r icted

but pract a . v important :l.ass of passage times nam el.v , those

I - ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
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corresponding to the passage through a subnecvork of the g~.ven network of

queues .

The rssul ts of this paper provide a f i rm basis for compari ng the

statistical efficiency of the two methods when both apply . The calculations

also permi t an assessment of the efficacy of the mar ked ~ob method for

simulation of “respons e times ” (complete cI::uits in the network); the

marked ~ob method is apparently the only avai.~.ab .. means ~f obtaining

confidence intervals for response times frrm a single sinulat~on run .

Z. ?~~L~1I~A2. ES

~e consider closed netwo rks of queues with a finite number of jobs

(cus tom ers ), 
~~~. n each network there ire a finite n~~be: cf serv tce

centers , s , and a f inite numb.: of ~ob classes , :. At each epoch of t ime

each j ob Is in exactly one ~cb class, but sobs may change class as they

trav er sa the ne two rk. Upon c p .teion of ser’:ice at can te r I ,  a ~ob ~f

class ~ jo.s to center ~c and changes to class ~ with probab ill::’ ~~~~~~~~~~~~~~~~ ~e

assume :hat ~~~~~~~~~~~~~~~~ :~j,zsc} is a j~. :en ~ed~ cio .e ~a:kov

matrix .

A: •aca ser’I:a cents: ~oos ~~eue and :ecei~e se~~tcs accc:d .cg :o a

timed pr Iori ty scheme a~cng c~assas, W~’-ich scnene can •:ar:’ f:cm cents: to

center. Each t ents: ote:a:. s as a s~ngle ser’e:, ~~ cess~ng ~c~s of a

f ixed class acco:c ~ng a f~ xa4 ser :~ce scip~~ ne. A~~ serv~ce :~ nes

..n the ne twc r~ are n~~~a .l;? de;e~dent , anc ~: sach :e~te: have a

st~~~~ ioa with a lox-~ tase ~expcnsn:ia s:age~ represe ntat Ion

a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘•—-  —
.—- I
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(ci . Cox (1955), Gelenbe and Xuntz (1976)) with parameters which may depend

on the service center , class of ~ob being serviced , and the “state” of

the entire system. (We exclude zero service time s occurring with positive

probability.) A job in service may or may not be preempted (according to

a fixed procedure for  each center) if ano ther job of higher priority j oins

the queue at the center. We restrict the present discussion to networks

in which all, serv ice times are exponentially distributed , and deal with

distributions having a Cox-phas. r.presentation in the usual way by the

method of stages.

As in Iglehart and Shadier (1979a) , vi view the N jobs as being

completely ordered in a linear s tack, and def ine the vector Z i : )  according

to

2(t) • (c w (t),...,C~
1
~(t), S1(t) ;...;

\ ~k(l)

~~~~ (t) , , . . ,C~~
3
~~~t ) , 3

5~~:)
’1
~ . (~ .l)

k( s) /

The l inear stack correspond s to the order of components in the vector ~~~:)

af ter ignorIng any :ero components . Within a c ass at a center , jobs

waiting appear in :~e linear stack in the order of their arrival at the

center , the atesc to arrtve being closest to the top of the stack.

Letting N i t )  denote th. position from the top of the mar ked ~ob in

this linear s tack , for  e�O the state vector of the ne twork is

X~:) • ~, ¼ t ~ .N¼:)~ .

a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _  -



As before , we specify the passage time f ar  the marked jo b by four subset s A 1,

A 2, 
~L’ 

and of S, the state space of the p rocess ~~~~~~~~~~~~ The sees

and A2 (reap. 3~ 
sad 5.J determine when to start  ( r asp . seop~ the c .ock

measuring a p.articul.ar passag. time for  the marked job . Denoting the jump

times of ~ by (
~ :n~O}, for k ,n~ L we require that the sets A ,, , A~ , 5, anda —

I, satisfy:
S

it —i~ ”~~.’ 
m n~~~:~ ‘a-l ’~~’~1. and

then 
~ u—l ’m~

’5L and f o r  some ~~k.

and

~~ ~~‘n—l’ ’~l ~:‘ u—l—.~’ ’3l and

than 
~ m_i,,,m ) lA i and ~~~~~~~~ for some m’~~.

These condItIons ensure that the start an~ :arn.tnaelon t~..mes fo r  the

specIf~ .c passage :~me strictly alcarnat.. Also in : e s  of these ~~~

times , ~e define two sequences of r andom ::es; and ~~~~E..

The start ::esp . termination; time of :ne ~:h passage time fo r  :te nar s~

~ob is denoted by S~~. ~:esp. :4 :. Assuming that a pas sage tine f~: th•

marked ~~~ begins at ~~~ we have

S4 • iai~ n a~~~~~) A :. X n~~~~
4
l .

• i
~~~

n)S ._ . .X i . n~~
a s.  

~~~n—~
’ ’3:’

Th.fl :~e ;:n passage :~:e f o r  the ma:.~ad ~~~ .s ?~~~~ — S . .  j~~~. ~o:.

that these ~e : ~~ns ar e sone~~at non :.s :~ve than those in 
~~~~~~~~~~~
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We let X~ denote the state of the process ~ when the (n+l)st passage

time of the marked jo b begins: Xn X(Sn)~ 
a~O. Tb. process ((X ,P~~1):n�O }

is a regenerative proces s in discrete time, and the regenerative property

guarantees (Miller (2.972)) that as n-~~,

~ (X,P)

where > denotes convergence in distribution. The random variable P is

the limiting passage time for the marked job , and the argument in the

Appendix of (9] shows that the sequence of passage times for any other

job also converges in. distribution to the same random variable. The goal

of the simulation is estimation of 
-

r(f) E(f(P)} , (2.3)

where f is a real—valued measurable function with domain R
+

(O ,
~
). We

assum. that P(P~D(f)}—O , where 0(f )  is the set of discontinuities of the

func tion f .

3. TREORETICAL VALUES FOR FINITE STATE MARKOV C~iAINS 
-

Let (Xk :k �O} be an irreducible Markov chain with V 4te state

space E ” {O ,i , .. . ,N}  and one—step transition matrix

a tP~~ :i ,ia E} .

For n�l, P~j 
denotes he n—step transition probability f r om state I to

stat e ~, and

• ~p~~ :i ,j~ E} .

L _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~ ~~~~~~~~~~~~~~~
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Far a fixed state is!, denotes the conditional probabilL :y

associated with starting the chain In stats I , and denotes the

cor respond Ing conditional expectation. For j cE and n~l , we let

denote the ath entrance time of ~x~ :kaO} to state j ,  e.g .,

~~(J) —

and Lee n~ (j ) .d~~j )  and n n~~~~~n—l~ ’~~’ 
n)L.

We consider vectors such as (v(O),v .l),...,vçN)) to be colu vectors ,

and n ew neal-valued func:~ous , such as f and g, hawing doma~n in this

way. nLess specifIed otherwise, the symbol I C : ~ denotes the vect or

(r 
~~~~~ I’ ~~.. 1 C . ’.

~ I ~~~.I’’~~ S

:~ additIon (for  vectors u and v) the symbol ~.v denotes the vector

~.u ( 3)v(3) ~~~~~~~~ u L N ) v L N ’ ~)

For a matr ix A•~a , a , , . . . , -& ‘, we let

a’A • ~~~ • (u sa ,,I~ a 0 e

FInally . for a ma::im 5 b ~~~~~~~~. , b ’ . ~~~~ et

•

For t~e discrete time .~ar~ov cna~n ~~~~~~~~~~~~~~~~~~~~~ ~e consider here

cycles o f the nsgen.na :i’-e pntcs ss fo rme d ~ r the success~~ s en:rsncas

sta t e 3 , and hencefor th suppress the 3 In the no ta t Ion  , , etc .

For £.j E and n0 ,.,..., let
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• P1f~~1>n, 2C
n
Si

~~

and set

•

We obtain 0P
2
—0P from P by setting the 0—column of P equal to 0. It is

easy to see eh.at 0
~n is the matrix product of n copies of 0P , and that

for ail n�l, 0p~~•O.

For any real—valued function f with domain E, the state space of

(Xk:kzO}, we define

•

Theorem (3.1) of aordi~k , Iglehart , and Schassbergsr (19’6) shows that

for  an irreducible , finite state discrete time ~tarkov chain with transition

matrix P ,

— ( 3 . 1)

and

E CY 1( f ) Y 1(g)} • ( I— 3P)~~ h , (3. )

where ~~~~~~~~~~~~~~~~~~~~~~~~~~

Now we consider continuous time Markov chains ~~tX~,,t):t�0 with fin i te

state space E—~~.l ,...,N}, transition macnix ~~~~~~~~~~~~~~~~~~~ and matrix

of infinitesimal parameters ~~~~~~~~~~~ The .xponen:Ia .lv distributed

L i~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~ ~~~~~~~
- ——
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holding ti*e in any state isE has rate panim eter ~~•—q~~. For all ~~E, we

assume that 0<q1~~, L.a., that all states are stable and noo.absorb ing,

and in. addition that

~~~
qjj s O .

This Las: assumption guarantees that , starting from any stat. is!, :~e

~1ark~v chain ~ mass a transition to a next state j E .  We now form the

ju mp macnix of the chain , defining the elements accordIng to

if 1.1.

if j—i

e assume :z~a: toe jum p macnix ~ Is i:nsduclb .e (an d th ere fo re p os i t i ve

rec u r r ent ) . This is equIvalent to the contInuous time ha:~ov chain ~ bei ng

IrreducIble . For j Z  and nil, we let 3~~j) d enote the n:h entrance tim e

of to sea ts ~~, I.e. ,

£,(j) • ~~~~~~~~~~~~~ :~~ )•j

.U in the case of dIs cr ete time .‘tar~ov onilos , we restrIct a::an:.on

to regensna:iva cy :.es formed ~y the suo ess iJe .n::~nces to state ~ , inn

suppress :~e ~ in our notat ion.  ~or :20 , ~e ec

• ~~~~~~~~~ x~::—~

•

and . f or n~0,  :ons:r ~c: :ne matrIx from In the ume manner u -c

~~ fro m P in :he ciso:ste t ime oas e. 
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For a real-valued function f defined on E, vs define T s .f) according

to

y
~~f~ •f

d ] 
f(X(t))4t

and let q 1 be the co1u~n vector

—1. —1. —L —1.q

Theor~~ ~3.l0) of ~{ordi~k, Iglehart , and Schassberger ~.l9~6) shows tha t

for an irreducible , finite state continuous time ~ark ov chain with j ump

matrix ~— jnd vector q of race p~rem.t.rs for holding times 1

E~Y. ~~~ !~J ~P( : ’fd t ~ • ~I— ~ R~~~~.f 4 q ’’~
(0

and

• ~ 0P~~)hd:} • ~:_ ~ R 1 ~ hoq

where h .fs ! . g ) g.~~ ’ 5 f ’~}.

~~ . VA~~ANC! CNS~A~TS F R  ThE ~AR~E~ :cs METhC~
We consider closed netwc rks of queues and passage times as in Sect~.on

For c�O , the state vector of the net~or k is

X~t) • Lt),N~~)) I

where ~~~~ corresponds to the linear ~ob stack of Equation ~~~~~~~~~~ and N s5 :’

is the posItion In the ~ob stack of the narkec ~ob at t ime :. The

process ~•~~~: t ~O~ Is an irneduc I~~.e , positIve rec~rrenc Markov chain

-~~ 
j

~- ~~~ —- - -----------
~~~~ -
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with state space !. ~encting by 1(t) the Last state visited by the ~iarkov

chaIn ~ before j umping to ~ (t), the process ~ •C V ( e ) : t ~ O~ waere

V ( t )  • (L(e) ,X ( e ) )

is the f undamental. s:ochas t~o process of the passage time simulation.

The process 
~ 
nas a seats space, F, consIstIng of all pairs of states

(i,~), i,j! for which a transitIon in. ~ fr om state i :3 state ~ can occur

with posItIve probabIlity . Since X Is an irreducIble, posItIve recurrent

~larkov chaIn, so is V. We defIne subsets S and T of the state space F

according to

5 ((~,m)sF :kcA,, mCA,}

and

• ~(k sF:ks31 , ms3,~

The an::ancas of 
~ to the fixed subst : S ~:es-p . :: correspond to :ne starts

:nesp . :crmimaelons of passage times fo r  the marked j o b .

in :~ l~ h~~ and Shedler (L9~ 3a) , we se..acc a (fixed) stats of 5,

dasI~na:ed state ~~, and assume that 7(-~)—0 . o estimate :(f), the marked

job meeno d prescrIbes that we :arr7 out the simulation of ~ in 3—c:::es

defized ov the successive returns :3 s ta te  0; wIthin aac~ :yc.e we reco::

the number of passa ge times of :~e marked ~ob and mea sure each of these

passage times .

- ~~ ~~~~~~~~~~~~~~~~~~~~~~~~ — - -
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We let {V :n�O} denote the embedded j ump chain associat ed with the

continuous time process ~~~. The random times £y n.;n~
l} denote the lengths

in discrete time units of the successive 0—cycles (successive retu rn s to

the fixed state 0) for CVn :n�0}, and we define 5Q50 and d ’.y1+. . .+y~, mal.

Then the number of passage times for the marked job in the f irst  0—cycle

oi~~~~is

~ 1
_I.

5 

~~~~ 
~(V~cS} ‘

(For a set A , 1~(x)—L if xsA and 0 if x~A. acre we suppress the

argument 
~~

.) The sum of the values of the function f for the passage times

of the marked job in that cycle is

Yl(f )  • f ( P~~) . 

-

:t~ l

We danoce the analogous quantities in the kth 0—cycle by ~~ and

The key results leading to point estimates and confidence intervals

for r(f) are that the pairs of random variables

- 

((Yk(f),M.~
):k�l} (4.1)

are independent and identically distributed , and that

r( f )  • E
0~ Y1

( f) } / E
0~ M1

} , (4.2)

provided that the quantity EC~ f ( P)~~}<~ .
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Given EquatIons (4..l.) and (4.2), the regenerative method provides from

a fixed number n of 0—cycles the so—called classical point estimate (cf .

tgl.harr (1915b))

—

and the assocIated conf Idence interval for :(f) follows from the central

Limit theorem

(f ) r ( e)  :~—> N (0 , 1) . (‘.3)

asre ~ (0 ,1) Is & standardIzed (mean 0 , iarlance 1) normal r andom varIable

and :(f) Is :~e varIance of Y,(f)—r (f)~ 1 .

For calculatIon of theoretical va lues , we restrIc t a t tent ion :o t~e

~aan passage time; thus , the functIon f in the definition of :~f) is the

Identl y function.  ~sing the results of SectIon 1.1 , we show how to compute

the val~e of the mean passage time r and the correspondIng ‘ariance

constant :2 appearing in the cen::al limi t theorem of EquatIon ~~.0). This.

:a0.~ ala t~o~ s rest on tb. definitIon of rvo pa icu .ar functIons ~denoted

* *f and g ) having domain F and taking values in the set ~.D ,l;.

We defIne the func:t.on to be en. .ndl:a:or func :Ion , ... , of the

set S; i . e . ,  fo r  (: ,m.: ’ ,~~~
’ )~~ F,

• * , ,  
, ,  5 s~~’ ’  ‘

L _  _ _  

À
___________ _____________ ________________ 

-~~
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Proposition ~.l follows directly from Iquettons (3.1) and (3.2) .

*PROPOStTION 4.1.  Let f be the function defined by ~~uettott (4 .4) , and ~
the transition matrix of the discrete time Markov chain 

~
V
k k

~
O
~
. Then

~S— 1
S 
~~~~ f * v

and

•

where d is the time of the first return to the s ta te  0 in tV ~kiO~ and1

~~~~~~~~~~~~ 
:

f* f*

We use this result and the 4ef~ni.tion of 1, to obtaIn the quantities

and Z~~M~~ according to

- *E~tM.~ • E0 t ’~~ .f \
~

and

r 
• .

For an element ~~~~~~~~~~~ he ‘ alue ~f the function .s ~ if a

passag. time for the ~arke4 ~ob starts or is under~a~ when the

configurat ion of the jo b •ta~k ~s ~‘ and the aerkei ~~ ~n pos~.t~on ~~
‘

and is 0 othe~~ise. rormally~ let ~e the state tpa ~e ~ the proc ess

~—~~~e~~t�O ’, and denote ~ ~ the ;et of ~center .c lai s ’ p ai r s ~n

network . We def~ ne a funct ion  ~ taking alues in ~ and ~aving

domain ~~~...,...,N } as f .,llows. For zi and ~~~~~~ the ‘ a - .~. ~

_ _ _ _ _  

L
I ,,~; ~— ~- -~ —&~ — ----.—~~~~ —~~

I S- ~~~~~~~~~~~~~~~~~~~ - —
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is ( i .j )  when the job in position n in the job stack & Is of class j at

center I. Now consider the embedded jump chain 
~
V
k:k~

O
~ 

associated with

the Oontinous time Markov chain ~~. For states v ’,v”(F, the state space of

(V
k:k

~
O} , we write v ’ v v ” when V ’1 U access ible f rom v , i . e . ,  when for some

nal., the probability starting from v ’ of enter ing “ on the nth step is

positive . Similarly , for any subset ~ of F we write v ’ t. v’1 when v ’1 is

accessible from v under the taboo L. This means (cf Chung ~L 9 6 ) ,  pp.  .~5,

48) that for some n~1, there is a pOIttiVC probab Lli:’t, starting from

state v ’1 of entering v’1 on the nch s tep under the restriction that none

of the states in . Is entered j~ between excluai~ e of both ends).

~enoting the set of (csnter ,class ’ pairs ~n the net~crk by 0, we ief Ice

a subset ~ of 0 accordIng to

G ~(i,j)cC; for some (z,a,z’ ,n ’)S , h(z ’ , rt ’ )s ( i , j ) }  ~

~(L ,j~~C: for  some (z , n , z ’ ‘) c i — ~ S~~~ , v ’~~ and ~~~~~~

v ’ ,c,z’,n ’), Lz ,n , z ’ .n ’)  ~j v ” and :‘ .n ’ —~ .,~~ :-

Thus, the set L~~’’ 
where a ¼center ,c .aas~ paIr Is ~.c the set ~~~, ~res~ .

~: If It is pos sIble fo r  the marked ~ob to t e of class ~ at cen t er ~

the passage tine specified by the sets A 1, A~ . 3., and 3~ starts r esp .

Ia

for (z ,n,:’ ,n’
~~sF , we 4efice the functIon ~ as

j  ¼ , ~.,t .O ’~ • ,...h : ’ .n ” ’  . 
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Then we have

PP.OPOSITION 4.2. Let be the function defined by £quaeion (4.7), and R

be the jump matrix and q the vector of rats perimeters for -  holding t imes

in the continuour t ime Markov chaitr~~. Then

• E{f ~ 
*(V())d~~ •

and

E((T1(g
*))2} a ~~~~~~~~~~~~~

vher e~~1 is the time of the first return to the state 0 in ~~~, and

it 2f •E(t1.(g )
~~~
.

Proposition ~~ . follows directly from Equations (3.3) and ¼3’,”~ . We

use this result together with th. observation tha t

Mf g*(v(s))ds • 

~~~~

to obtain the quantities

and ~ P j~ — E0
(Y
1(g

*)}

E~~(? ~~ • E0((?,g *\Y~ . ~w .l~~)

- - S  ~~~S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~S-—~~~~~-— —SS- -~~~~~~~~~~~~~~~~~ S - _~~~~ 

U.
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Ju ng the ra tio formula, Equations (‘.5) and (4.9) yield the quantity r .

~o obtain an expression for the variance consta n t 
~~~
‘ appear ing in the

central. Limit theorem (Equation (4.3)) for the marked ~ob method we require

otte additional result .

PR0POSt~~0~ ...3. t.et a be he j ump maerlz and q the vector of rate

perimeters for holding times in the continuous time ~tarkov ~haLn 
~~~
. For

the functions f~ and defined by Equations ~~~~~ and ~~~~~~~~~~~~~

E~J L  g~ ¼7(s))ds 
~~-L 

f
*~~~~~

•
~~~~~~~~ 

- ,

* . _ , * * —1. —
. 

* —
, 

. * — ‘where h •1 :— 0a) ~f ,~ g •q ~q ~~~‘f —g •q ~f

The proof of Proposition ~ .3 .  is In the Appendim .

We use this result to obtain

_ *~~~~~~~~~~~~
\ f ’¼ V .~~~ .

Then an express~.on for the varIance tonseant

• 

~~~~~~~~~~~~~~~~ 

p
4)~~ — lrE~~(? ?)~L .~ .

f~~~.~vs ‘ron Eq ..atlons ~~~~~~~ , . .C~ an~ ~~~~ I~

- ~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~ ~~~~
.- 

.. . - _ - -
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Wham comparing the statistical efficiency of the narke~i job and

decomposition methods , it is convenient to bays a central limit theorem

compar able to Equation (4.3) but La terms of simulation time , t , rathe r

than number of cycles . a. Let m (t) be the number of passage times

completed by time t, i.e ., in the interval (0,tl. If we denote by n (t )  the

number of 0—cycles comp leted by t ime t , than f r om renewal theory , as t~~,

nçti , 1.
t

with probability one , where E0 C , } is the expected .ength of a 0—cy cle in

~~~. this implies that for  l arge t, the number of 0—cycles completed by

time t is approximately t/E~(31}. Combining this result with Equation ~‘.3’ ,

it follows that as t~~~,

tL.~~[(m(t)}
_i(:~~

)
f(P )) _r

~~~}— 
~~~ > N~0,l ’

This result is Independent of the initial state V~ 0” . Since the numerator

in this centra l .imit theorem is independent of the state 0 se~ected to

f orm cycles , so is the denominator. Thus for  th. mean passa ge t ime .

1’
I e • (E~ C~~, ) )  ‘r ’E 0(~4 1.

’

is the appropr I ate  measure ~f statistical eff iciency for  he marked j~’b

method and is independent of the state OiS selected to form cyc~.es. Note

that we obtain the quant i ty  E
~~

.
~L
} according to

•

L _ _
5- — -— .

~~~~~ ______ 
-
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ihere I. is the f function identically equal to one and

• ~ L(V(s))ds~ • (t—
0
i)~~~ (Leq 1)

t o  )

5. VARIANCE CCNStA~4TS FOR TBZ DECO~~OStTION ME~~ O~

We now turn to the decomposition method. As in Shed .er (1979) we

Label the jobs f rom I to N, and for 1 l .,2 , . . ., N , denote by N1(c) he

position of ~ob I in the linear ~ob s tack at time t.  Then , in terms of cbs

vector 2( c) corresponding to the j ob stack, we set

X°(t) — ( Z( t) ,~t~ (t) , N2 (c) , . . . , N~~( t ) )  . 
-

—

~ca p~~csss ~ —-ti ~c) : c~O~ l.a an Irreduco.bla , positl’te recurrent continuous

time ~arkov chain with stats space

We Let :.0 (c) denote the .asc state visited by ths ~tarkov chain before

j umping to X0 (t ) , and for  tzO def Ice

• (L 0 ( c) , X° (:) )

The process Z°. 1 : V( :) : t 2 0}  is the f undamental stochastIc process of the

~assage time 3izulat~on .

We denote tce state space of by and defIne the subsets 30 and

of accordIng to

S • ~~~~~~~~~~~~~~~~~~~~~~~ for some k
.1 — .1

and

and  

- 

. 

- 

. 
-
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tO 
• ~~~~~~~~~~~~~~~~~~~~~~~~~~ for som• k,

and

The successive entrances of to the fixed subset S° of F° correspond to

the starts of passag. times irrespective of job identity , and the entrances

of to the subset t0 correspond to the terminations.

The decomposition method applies to passage times for which the sets S

and T (which define the starts and terminations of passage times) are

disjoint. Denoting by (P~:n�l) the sequenc e of passage times (irrespective

of job identity) , enumerated in order of passage time start, by the

argument in the Appendix of (9 ) , P~ -~’P~ , and the goal of the simulation

is estimatIon of

r0 (f )  •

to estimate r 0 (f ) , we carry out the simulati on of the process in

random blocks defined by the successi.e entrances of the p rocess to the

fixed set of states ‘.~~~~ . Entrances of to the set correspond to the

- 
- - terminations of passage t Imes (irr esp.ct ive of ~ob identity) which occu r

— when no othe r passag. times are underway , and which leave a fi~ced

configuration of the ~ob stack. Formally . recall tha t C is the set of

(center ,class) pairs in the network and define a subset M of C according

to

H t¼ i ,j) C: for some (z , n , z ’ , n ’) t r — S , h~ z ’ ,n ’ ) — ( i ,~ )~

‘.(i,~ )cC: for some , z ’,n’)F—¼ ~~r), v ’c~ and v”sS

v ’ (z,n,z ’ ,u’ ) , ~z,n,z ’ ,n’ ) v” and h~:’ ,n’ ~~~~~ ) 
}

• 

- --  -
~~~ a -

~~~
-
~~~~~~~~

-—•
~~~~~~~ ~~~~~~~~ 

___________________
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Thus , the set where a (center ,class) pair is in the sat E1 treep .

&2 I if it is possible for the marked ~ob to be of class j at center i when

a passage time for the marksd job specified by the sets A1, A2, 
~~~~~~

, and

ter minat es t resp . is not underway) .

Now define a subset 30 of 3, the state space of ~~{Z(t ) :tzO}, according

to

D3 
• tz(D (~,n)(f1~t ~~ni~ and f~cr  some n ,.

Elements of the sec 30 corrsspoud to configurations of the ~ob stack upon

terminatIon of a passage time with no other passage times ‘underway . The

sec 30 is nonempty becau.~e S~it~~~, and :hui the set Is nonemp ty .

Therefore, we can select an element z 0 of 30 and (In terms of thIs fixed

define the set according to

—

where Is the suoset of correspondIng to the te~mina:Ions of passage

times .

For k21, denotes ne le~g:b In dIscrete :ine .~cI:s of the k:h b .ock

(returns to he set of the process ~7 :c~0- ; the latter is the emb edded

j ump chaIn associated with ~~~, and it set ~~.0 and 21. We

assume that V0(0)~~
3 and denote by the nu ber -of passa ge tines in the

:th block of the process E°. .~.so , we Ia: Y0~f) be the s~n of be

uancI:Ias over the pass age tines In :~e mth b .ock of ~~~~~~. The k.’~

results of :.~ leadIng to point escl.ma:es and confIdence ~ncsrrals for

the -~uan:I:y r°~ f )  are that the pairs of random

I i 
___ _ _ _  

. 
_ _ _ _ _ _ _ _ _ _1T~~~ —-__~:i— — — ~~: ~~~~~~~~~~~~~~

-
~~~
--.— 

~~~~~~~~~~~~~ 
- -



_ _ _ _ _  - 

21

{(Y~(f),K~)~a~1} (5.1)

are independent and identically distributed , and that

r°(f) • E 0
(r~~( f ) ) / E  

0
(K~ } , (5.2)

U

provided that the ~ua~ttty E(~f(?
0)~ }<.*. The symbol 

~~~~ 
is an abuse of

our previous notation. It connotes conditional expectation associated

with starting the ~tarkov chain V° in one of the states In the set ti0 . The

def inition of the set U~ implies chat the conditional expectation is

independent of the particular starting state in &~.

Given Equations (5.1) and (5.2), from a fixed number of blocks of

the decompositIon method provides the point estimate

~~(f)  a ~~~( f ) /
•
~~ ,

and the assocIated confidence interval for r0~f) follows from the centra l

limi t theorem

n 
•
~ 

~ N~O ,l) . ~5.3)

L 

~
_ f I ~~~~~~~~

U

The quantity ~~~( f ) ) ’ is the vari an ce of Y~~f)—r
0
~f)K~.

aking f to be the ident ity fu nction , we r estr Ic t attention to the

mean value r0 and consider the associated theore tical values . 3y the

argument which leads to Equation ~~.lZ), an appropriate ne4sure -~~~~ the

statistical efficiency of the simulation is the ~uanticy



- ~~~~—-

- (
~ c~~ \1 ~~ £ 

~~~ •/ U ’
where is the leng th of $ block in the contInuous time process

The individual quantit Ies req uired to compute this measure of

efftctenc’~ are defined In terms of the successive returns of he process

to a f ixed, set of states ~~~ rather than to a singl. state. ~toreover .

the successIve entrances of to are not regeneration points for ~~.

~~coriingly . I: is not possible to apply the results of SectIon dIrectly .

~ we did for  the marked ~ob metho4. We can, however , select a

state ~designaced state u~ from he set ~ and compute he quantity

correspondIng to EquatIon 5 . e ’~ for the resultIng u0-cycles . Not. that

the successIve entrances of the process to the fined state are

regeneratIon points for the process The expre ssion In Equation ~~~~~

computed for u’~-cycles Is

., 
-~~ 

. ,‘ -
~

• 
~~~~~~~~~~~~

‘ —  -

~~~~~ z
• J -.~

where the constant :~ ~analogous to s defined fo t  ~~—-:~ -~les . Th~.s

quant~ ty ~~~~~ Is equal to e~ . o see :n~s, for  t~ l let m~~:~ ~e tne

number of ;ass~~e times rr.a~rect~~e of ;ob t4en:iry~ compl.t~~ ~.n :~e

interval . , t . :n terms of s.ula:ton :~~e . :. we have :~a centr al ~.n.:

theo rem

~~
. ‘ . a • ~ ‘. s .  , I ‘ ‘ .

‘
— — — •

•
.

_ 
— ‘~~ 

— ( v’ ~ ‘ .
— ‘ • ‘ — — — - - .~

..- —
~ ~

. , .
~• S. ~~~~ •~~~-~~~~ ‘ •  * S. — ‘ . •~~~~~‘ • 5 — . —

I— I -

and . ~ en .i :ce ..cen:.t f ..nc:~cn , :e varIance :onstan: .n :~e

denominato r a the quant Ity e There s a sinIlar :enttal Iin~.: :~e:cem

• 

_ _  _  _ _ _  

_ _ _ _ _ _ _  
I

_________ — — —
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in terms of u0—cycles; the numerator is the sane and the veriance constant

in the denominator ii •
0
~u
0). Since the numerators in these two central

limit theorems are the same ., as are the limiting random varf~bles ~~~~~~~
.0 must equal e0(u0 . For a similar argument , see PropositIons 5. and

5.6 of Crane and Iglehart ( 1975).

Next we observe that the number of passage times in a u.~-cyc~.e of the

process ~~~~~~ as welL as the sum of the passage times in a u0-cvcle, doss

not depend on the identities of the jobs in successive configurat Ions of

the job stack. t follows that we can work with the process ~—~~~t t ~3~

defIned by

•

were ~~ :‘ cor r esponds to the llnear ~cb stack , and ~~ t)  is the last stat.

visited by the Marko w chain — ‘: Z ( t) : t�0 ’ before jump ing to :~~t ) .  The

process ~ is an ~rreducibls , positive recurrent continuous tine ~(arkov

chain with a state space that is a subset of ~~~~~~~~~ Nct• that in general

the state space of ~ is much smaller than that of  
~~~~. and that working

with the process ~ Is computatlonally advantageous.

The computations rest on the definItion of two particular functIons

cf and g~ defIned on th. state space of ~ and taking values in the

set ‘C ,L~. ~e defin, the functions f and g in te~~s o~ f~ n~ :ior.s f L 
~nd

def ined on ~~~~~~ the state space of the process ~~~~~~. ~e cake the ~~~~:~ on f ’

to be the indIcator fun ct ion , .~~~~~~~, of the set ~oh ~efines the star ts

I -- - — --------- - -— -..- ~~~~~ -~~
•
~~~

—-
~
---- - — —-
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of passage times irrespec tive of ~ob IdentIty ; 1.4., for 

•

Thus if a passage tine f or some ~ob starts when hIts

then 5~.l. Not. that for each (z,z’) in the
state spac e of W, there exist n11. . ., a~ ,n , . . .  and such that

~~~~~~~~~~~~~~~~~~~~~~~~ For such a (:,z’), we defIne

a 
~~~~~~~~~~~~~~ 0

’ 
. (3 5)

The fumction is well defined since , for  fixed : and z ’ , the function f 0
i.s .ndepecden: of ~:s other arg .~~en:s.

For an clement ~:,n,,. .. ~~~~~~~~~~~~ ,n~)cF~ , the value of the

~~ Is toe nuncer of Passage tines that scar: or are ~nd.~~ay whe n
the : f ljurat inn of the ~ob stack I s :‘ . Formally , for

we defIne

L 

N0 
,j ~:,n., ,  • . . in~;~~: e n.,... • ~~~~~. 

~~

Then, for ~. z,:’) In the state soacs of ~~~~, ~e set

,:~:
‘ ) - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Th4 4 us:ifIcat .on f o r  using he orocess ~ ii that the nu ber of :assage
tines wn~co start and termo na:, in the fIrs: ..‘—c~ c~ a of ‘

~~~~ is

F

______ ____________ — ~~~~~~~~~~~~~~ -—
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f(W~)j  .0
and the sum ~f the Passage times in th, first U 0 0yc1e of

I.
J g(W~~)~ j 5

Here 
~~, (reap . K

1
] is the tin, of th. first return of the process 

~ [reap.th. jump chain fWk:k.~
Q
~] to the f ix.d state w0. The return statecorresponds td th. fixed state u0 selected fro m the s.~ ~J

0, j~~ jf

U
0 

•

0 0then v 
~~~~~~ ) ,

Sy direct application of Equa~j~~3 (3.1) and c.3.2), we have

PROPOStTION 5.1. Lee t be the funct ion defj~ed by ZquacIo~ 5.5), and Rbe the trsnsj cj .,~ natr ix of th, discret , tim e ~‘tarkov Oh~j~ (Wk :k ~o;.. Then

• 4~ f ( ~~ )~ •
(k~0 j

and

~( ( Y 1( f ) ) 2 } •

where 
~~ 

is the tine of the f i rs t  return to the stat , in t
~k

:k
~
()} and

.4
I

--



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

From Proposition I.3.L’~ w obtain and E 0 C (X2 )~~ acc ording to

• 
~~~~~~~~

and

• !
~0 {¼? ].( f ) )

~~
} . (5..3)

3~ direct applIcatIon of !quati ons ~~~~ and ~~~~~ vs have

PR0?0S:~:~N 3.-i . ~..et ~ be th e fu nction def Ined b? !quation ( 5 . ó ) ,  and ~
be the j ump ~atrtx and q the ‘~ec:or of race par ameters for holding times

in the continuous tins Markov chain ~~~ . Then

— — l• g s ’~ ds • ~~~~~~~~~ ~~~~ 
•)

- 0

and

~~ 

~ . a 
~:— 0a~~~~h~q~~’

whet. , Is the time of the ft:sc rs:..rn to the s:s te  in j ,  and

~~~~~~~ ~~

~4e use this resul t to obtain

S

~ ~~~ . ? •

w

and

~~I )~
\
~~_ ?;)-~ • *



27

Using the ratio formula, Equations (5.7) and (5.9) yield h. value of

r°.. Analogous to Proposition 4.3 we have

PROPOSITION 5.3. For E (Y
1(f)} and E{Y

1(g)} given by Propositions 5.1 and

5.2,

I - K -].

E~’f 
1 g(W (s))ds E f(Wk) • (I — 0R)~~’h

where h.(g’q 1) .E {Y 1( f) }+f ’E(Y 1(g)} — (g ’q  ~‘ ) ° f .

We use this result to obtain

E 0~~ E P~~K~~ • E QIf~
1 g(W (s))ds ± f~ W~~~ , (5.11)

and an expression for the variance constant follows f r om .quations ~5.3),

~5.1.O) , aud (5.1.1) .

6. Nt’M!RICAL azs~~rs
We consider the closed network of queues of Figure 1 and the limiting

passage times P and R therein. t~pon completi on of service to a ~ob at

center 1, in accordance with a b inary—valued variable ~~~, the ~ob ~oins the

tail of the queue in center 1 (when p—I ) or joins the tai of the queue in

center 2 (when ~—O). Neither center 1 nor center I service is subject to

interruption. We assum e that both centers prov Id e service according to

a FCTS (first—come , first—served) queueing discip line . The limiting

passage time P is associated with the tine ‘teasured from entrance by a ~ob

Into th. center I. queue upon comp letion of a center I service unti . the ,~ob

next enters the center I queue . Similar ly,  the response tine R is assocIated

______ - ~~~~~ -—— - ‘——
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wtth the time between successive entrances of a ~ob into the center I queue

upon comp letion of a center 2 service .

make the assumptions that (i) service tines at centers 1. and 2 are

mutually independent and (ii) successive service tines at center I fo rm a

sequence of t . 1 . i .  random variab les exponentially distributed with rate

parameter \
~

, t—2. , . In addition, we assume tha t the routing varIable ~ is

a 8erno *zlli random variable, and values of ~Li at successIve completIons of

servIce at center I form a sequence ~f i.i.d, r andom varIables , independent

of the service tines at centers and ~~~. •~e cenoce by p the ;robab t~~.tv

that the routing random variable -
~ takes the value ..

Since each center sees only one ~ob c lass , by eating into account the

f ixed number of ~obs In the network, for t�.0 we tan define ~~ t’
~ to be the

number o f , obs wai:ing or in service a: canter I at tine t. Then the

pro cess ~~~~~~~~~~~~~ where N~:~ ~s the pcs~:.-:n of the nark.i ~ob

in the ~ob stack at time :, has state space

a sI~N; ~~~ N:

Tor the passag. time ? , the sets A. and A, def InIng the starts of

passage tines are

A. •

and

A2 •

Al ~~~—.* -- -
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Similarly, the sets and 3
~ 
defining the terminations of the passage

timePare

El — 
((i ,i) :OcLsN }

and

~2 
• ( (L—L ,i) :O’c isN} •

For the respon se time R, the sets A
1 and A2 ar e the same as for the passage

tine P, but 31—A1 and ~~~~~

In connection with the marked job me thod , the con tinuous tin.

process Z—((L(t),X(t)):t�O}, where L (t) is the las t state visited by t2~e

Markow chain ~ before jumping to ~(t), bat state space F , where

F • ((i,j,i+L,j+1)~O~i<N , l~j<N} u C( i ,N ,i+1,1) : Osi ’c~ }

£(i,j,i—l ,j):Oci�N , I�j~N} t(i ,i,i,l):l<i~N}

The subsets of F defining the starts and terminations of passage tines

for the marked job are

$ • ((i,N,i+l ,l):O~ i<N}

and

t • ~(i,i,i—].,i)~OKi

tabLes 1. and 2 give theo r etica l val ues for simulation of the closed

network of qu eues by the marked job method. Numerical results are

_______ I
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displayed for th. mean of the response tine a and corresponding results

for the passage time P are in parentheses . For the case of N.Z jobs

(Table 1.), the see Ss((0,2,l,1.),(L,2,l,lj}. With A ,~•1., 
~2a O .5 *  and p~~ .5,

the numerical, results show thee on the average 0-cycles defined by returns

to the state (0,2,1,].) are twice as long as those defined by the returns

to the state (L, , L ,I). ~oee that as expected , th. quantities f.~!0
(M
1~

(as weLl. as (E0(~~ }) 1’~~ /~ 0~M1}) are the same for the two return states .

tab le 2 gives results for N~~ sobs . ~er. there are four possible return

states , and for the Parameter values selected , retu rns to the

state (3,~~, .’,1) occur most frequently , and on the average eight tines more

often than returns to the state ~~~~~~~~

We now turn to the decomposItion method . The ;rocess

•

tea state space !0, vt~ere

• ~(i ,n,,...,n.~~:05UN; ~~~~~~~~~~~~~ n i,’ for  i#j ,

The underlyIng continuous time ;r~c.ss Z°a
~~

V°
~~

: ). :�.
~~

’ dei~ ne4 b:~

:. : •

where ~~ :) La the last state “Ist:ed by the Markov chaIn bef ore ~~~ping

:~ :(~~(t ) ,  has st ate spa ce The su bsets of definI n g starts and

te rmi nations of passa ge tines are

I - 
-
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S0 • ((t ,  ~~~~~~~~~~~~~~~~~~~~~~~~ for exactly one

and n~5.t; L~n~ cN and n j n j +L~ jØj
5

• n~~n~ f or

and

a

for Lsj~N ; n,~,#n
1 

f or k~j}

The p rocess ~.(Z(t)ttz0 } has state space D” (O,l ,..,,N}, the see D0at 0 ’
~,

and the set defining cycles of the process is

U0 
• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

n1~n1 
for i#j}

The state space of the stochastic process ~ is

((i,i+L):0~i~N— iJ 
-
~

and th. state v0 (l ,0) .

table 3 gives theoretical values fo~ simulation of the closed ne cw~rk

of queues by th. decomposition method f~ r the quantity ~~~~ The table

gives results for  N—I. to N—4 j obs , and the parameter va lues are the same

as in tables I and 2. For Na2 jobs , the value of the quantity

which measures the statistical efficiency of the decomposition method is

L6.5~6. The corresponding value from table 1 for the marked ~cb method ~s

20.390. thus , for  these parameter values the decomposition method is

approximately 21 percent more efficient than the marked j ob oeth~od. For

Nm4 jobs , the decomposition method is .a]. percent more efficient.

a —a.-
I

- ~~~~~~~~~~~~~~~ — - -
_________ .1 -, —
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*aertcal. results pertaining to the statistical efficIency of the

decomposition method in simulatio n of the c ased network of queues appear

in table .o. For N•] to ~~ jobs, thd~ table gives theoretical values of

the quantities r0 and for three sets of parameters values. We hold the

value of X L~ l and p 0 .~’5 fixed, but vary \ ., . tabLe 5 gives a comparison

of the statistIcal efficiency of the marked , ob and iecomposi:ion methods

for the sane sets of parameter values .
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Theoretical Values for the Marked Job Method .
Passage Time R (P) in Closed Network of Queues.

N.2, X 1—I..0 , 
~~~~~~~~~~~ 

p.0.lS.

Parameter Return State of Z— (V(t):tko}

(0,2,1,1) 1 ( 1,2, 1, 1.)

24.0 12.0

(M )
P 28.0 14.0

~~~~ i~ (20.0) (10.0)

E
0

CM
1

} 3.0 1.5
(3.0) (1.3)

~~ 9.333 ~.333
¼6.66~’

140.26~ ~0.133(129.06 )

02/S ~M ~~~~~0 1 
~..3.0Z2)

~~~~~~ ~~E0~M1~ 20 .390 20 .390 -(20,038) ~20.038)

A .  ~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

‘

~~~~~~~~~
-

~~~~
- -- i-’- —~
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e.3I1 2

Theoretical Values for the Marked Job Method.
Passage time P (P.) in Closed Network of ~ueues.

~~~ )
~~ L 3 ’ A

2
.0.5, p.0.75.

Parameter Return State of Z {V(t);t~
0}

(2 ,~ ,3,l)

216.0 108.0 5.0

ML 
-

So ~~ 248.0 124.0 - 62.0 61.0
(196.3) (98.0) t..e9.0)

~~~~~ 
1.5.0 3 .7 5

(1,3.0) (~ .5) ~3. 5)

I -

I 1 .
~~ ? d /E ,~~M.~ - 6.533 6.533 - 6.333 - 6.5~ 3

(13.067) (~~.~6) 
- 

~ 3.367)

:3 lll.343 - :053.6 : 327 . .33 6
~~l39.~~ 0) ~ .Q6?.3C0 ) ~33.. . -9CC)

L~0.756 ..~0, 56 L.’0 . ”56
- ~~~~~~~~

~ ~~ .$.2~ 1 .Ô3 . 2.’1 ~~~~~~3 0 1 (~ 3. .5ö2) ~3 3 . f O 2 ) ¼.$ .~~62~
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~~~~~~

-_-  - - __- - —-
~
-—

~
—-- - -—-  -

~~~

--

~~~~~

-— -—-—- -

~

-

~~

--

~~~~

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- _ _

35

TA.3L5 3

Theoretical Values for the Decomposition Method.
Passage Tine P in Closed Network of Queues.

X1•1.0
, X~.0..3 p.0.75.

Parameter N l  
r 

N—2 N.3 N.4

£ 
~~~~ 

6.0 24.0 30.0 62.0
u

o ~~ 
4.0 20.0 68.0 196.0

u j.l

E Q CK1} 1 0 3 0 7 0 1.5 0

E ot~~ 
P~~/E 0

{K~} 4.0 6.667 9.714 13.067

(~O)2 16.0 176.0 1023.673 4317.227

0, .0
(~0Y/E 0tK1; 16.0 58.667 146.249 237.815

u

(S 0C l
~

2 
~~~~ 9.798 16.546 23.035 33.39 1

u

-

~~~~ 
_  

_ _  

I -

~ 

~~~ — ~~_-~~~~-- ,~~
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TA3LE 4

Statistical S.f f ictency of the ~scompcsitIon ‘~athcd.
Passage time P in Closed Network of Queues .

p •0.75 I p .O.’S - p — O . 7 5
• 1.0 ~., • 1.0 • ..0

i ~

-

N r0 e0 r0 e~ r °

1 .0 1.3.356 4.0 .l.il.e ...0 9.798

2 5.333 19.956 6 .3 l7.ó6.~ 6.~67

3 6.236 27.380 3.0 28 .123 9 .~~~ 5 .C35

3 6 .933 35.139 0.0 36 .506 3 .067 3~~~ 91

3 7.333 ‘2 .591  12.0 ~9 . Q 7 6.6~5

6 7.519 ~9.068 L~ .0 63.o~3 20.33

~~~~ _ _ _  - -
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TASLS S

Relative Efficiency of the Marked Job and Decomposition Methods .
Passage time P in Closed Network of Queues .

- 

p •OJS p •0.75 p .O.?5
X • 1.0 • 1.0 I • 1.0

N ~~~— 0.l.Z3 \~~ — 0.23

1 1.0 1.0 1.0

2 1 1.1.90 1.189 1.211

3 1.207 1.2 .. 1.319

4 1.190 l.Z09 1. .~08

5 1.176 1.136 .499

6 1.394 1.10,2 1.597

I L~~ I _ _
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.4PP!~DtX

This appendix Is devoted :~ a proof ~f the result 3iven in

Equation (3.5). Recall that ~•{ X ( : ) : t ~C}  is a continuous state Markov

chain vith finite state space ~~~~~~~~~~~~~ ~ assume ~ is ir:educI~ 1e

and hence pcsi:I:e recu:rsnt. The mean holdIng tine i~ state i is q~ 
and

the embedded ~unp chain ~~n
n
~
0
~ ~

as transItion matrix R.. Again f and g

ire real—valued functIons defIned ~n £ m a  ~ 
.j 4

~~~~ j  then as :oiunn vectors ;

e.j., f•(f(0),...,f~N)). ~e :a~~ 0 as the ret ’~r~ state and as ~efore Let

3.. denote the tine ~f first entrance cf to 0 and denote ne :ine

f .:st entr an ce of to . ..ic C~0)’C , ~—0 , and ~ (n�l~ ~e :~e

random :.ne a: whIch the ~:h transItIon of ~ takes ~.ace . Since ~ is

IrreduciS .a and E Is fInite , with probabi.I:y one .

?R0P0S~~:0N. .~nd.r :ha :di:ions

—~ 
3. . 1 -

~ f ~ : ~~~~ ~cs ~~ i~X )  — 
~~~~~~ ~ 

,

.~here

h t R ) 1
~~~f’~ ~~~~.~) f 3 q~~~~3g. —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Proof. First we decompose the expression in Equation (A.1) as follows :

61 1 61 1

10 
1. f (X (s) ) d s  ~ g (X~) • ~~ 

Xn) n+i•~
tn) E $(X m )

• E E

• a b  + E E a b  — a b  , (A. 2)
n—0 m’.O n•0 m—n

where a~ and bm ar e defi ned in the obvious way . Now take expectations on

both sides of Equation (A .2) . We compute the three expectations on the

right—hand side of Equation (A.2 )  separ ately . Th, interchanges below of

and can be justif ied since the pr ocess ~ is positive recur r ent and the

state space is finite. First tcte easy term:

• E

• E ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

£
• 

~~~~ 
E1 )i~~~~~~~~~~~~

• ~~~~~ f ( X ~ )q~~ g(X~ l .

From Equation (3.1) we can conclude tha t

it 
_ _ _ _ _  

. L1.. - - ~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~ 
- 

~~
- -

~~ 

- —.. -
~

--

~~~~

--
—-



40

~~~~ a~b~~ • (t &)~~‘(fr~q
1.g) . •  (A.3)

The first term on the right-hand side of Equation (A.-Z ) is handled in a

similar fashion. After  conditioning on (X~ :~~ n} as above , we have

~~ a~b~~ • ~~~

•

n.0 m 0

Now interchange the sums and make a change of ‘:ariables to obtain

~~ i b  • E E~~c d }

•

m 0  n 0

• 0 r~~m.0 n 0  ~~Z ~~~

Since 3a~—~ -0a) 1 , we conc .ude that

~~ 
anS~ 

• ~:— 0 
‘
~~:— 0R)~~~f’q ~~ . ~~~~~~

The second term on the rijh:-~and i .4s of £.uation \A. 2’ :su~.:es a sonewr.m:

~~if’I.ran : :~~di:IonIng er~umsn: ,



~I ~~~~~~~~~~~~~~~~~ 
-
~~_~-

.—--- ----——.-_ -—-_--_ -_-- -~ ._-.—,----_‘——--— ---.--_ - -  - -~~~
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E4E E mnbm
l E ~~ E~(a b }

n 0  n n.0 s.C

• ~~~ 
~~~~

• E

• 
0r~ 0r ~~~~~ 

(j)g(k)
n.0 m.0 j E  kct

Proceeding as in Equation (A...) yields

£ E anb m ( t— 0R ) 1 
([¼r_ 0a

~~1gj.f.q~~) . ~A .5)

C.,sbin.tng Equations (A.3)— ~~.5), we have Equation ~A.1).

— ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
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20. ABSTRACT

In recent papers we have provided estimation methods for general
characteristics of “passage times” in certain closed networks of queues.
These estimation procedures are based on the regenerative method for
simulation analysis. Informally, a passage time is the t ime for a job to
traverse a portion of the network. Such quantities are important in
computer and co~~unication system models, and in this context, quantities
other than mean values are of interest. From a single simulation run,
our passage time simulation methods provide both point estimates and
confidence intervals.

We consider here the calculation of variance constants entering into
central limit theorems used to obtain confidence intervals from passage

time simulations. Using results of Hordijk, Iglehart, and Schassberger

for the calculation of moments in discrete time and continuous time Markov
chain., we calculate variance constants pertinent to mean passage times.
We do this first for the “marked job method” for passage time simulation

which is based on the tracking of a distinguished job, and then for the
“decomposition method” in which observed passage times for all of the jobs
enter into the construction of point and interval estimates. The results
of this paper provide a means of comparing the statistical efficiency of

the two estimation methods.
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